The Hidden Power of Componendo-Dividendo in Solving Ratio and Proportion Problems
Published by Ganit Charcha
| Category - High School Math Topics | 2025-08-19 01:09:09
Introduction:
In the world of algebraic shortcuts, Componendo and Dividendo stands out as a powerful tool for simplifying complex ratios and solving problems efficiently. Whether you're preparing for competitive exams or just brushing up your math skills, mastering this concept can give you a real edge. To refresh your understanding before diving into the solved problems below, we highly recommend watching this quick and clear explainer video: https://www.youtube.com/watch?v=uj81S90mrsI. It’s a great way to revisit the fundamentals and build confidence before tackling the examples!
Selected Problems on Ratio-Proportion with Solutions Problem 1 If \( a : b = c : d \), then show that (i) \( \frac{a^2 + b^2}{a^2 - b^2} = \frac{ac + bd}{ac - bd} \) (ii) \( \frac{a^2 + ab + b^2}{a^2 - ab + b^2} = \frac{c^2 + cd + d^2}{c^2 - cd + d^2} \) (iii) \( \sqrt{a^2 + c^2} = \sqrt{b^2 + d^2} = \frac{pa + qc}{pb + qd} \)
Solutions: (i) Let \( \frac{a}{b} = \frac{c}{d} \). Then \( \frac{a^2}{b^2} = \frac{ac}{bd} \). [Multiplying both sides by $\frac{a}{b}$]
(iii) Given \( \frac{a}{b} = \frac{b}{c} = k \Rightarrow a = bk,\, b = ck \)
Then, we have $ abc = bk \cdot ck \cdot c = c^3 k^3 $ $ a + b + c = bk + ck + c = c (k^2 + k + 1)$ $\Rightarrow$ $(a + b + c)^3 = c^3(k^2 + k + 1)^3 $
$ ab + bc + ca = bk \cdot ck + ck \cdot c + c \cdot bk = c^2k^3 + c^2k + c^2k = c^2k(k^2 + 1 + k) = c^2k(k^2 + k + 1)$ $\Rightarrow$ $(ab + bc + ca)^3 = c^6k^3(k^2 + k + 1)^3 $
Hence, $\frac{abc( a + b + c)^3}{ab + bc + ca)^3} = \frac{c^3k^3 \cdot c^3((k^2 + k + 1)^3}{c^6k^3(k^2 + k + 1)^3} = 1$
Problem 4 If $ \frac{x}{lm - n^2} = \frac{y}{mn - l^2} = \frac{z}{nl - m^2} $, then prove that $lx + my + nz = 0$.
Solution: Since, $\frac{x}{lm - n^2} = \frac{y}{mn - l^2} = \frac{z}{nl - m^2}$ then, $$ \frac{lx}{l^2m - ln^2} = \frac{my}{m^2n - ml^2} = \frac{nz}{n^2l - nm^2} = \frac{lx + my + nz}{l^2m - ln^2 +m^2n - ml^2 + n^2l - nm^2} = \frac{lx + my + nz}{0} $$ Denominator of the last ratio is 0, so, multiplying this denominator with any other ratio, we have $lx + my + nz = 0\cdot \frac{nz}{n^2l - nm^2}$ $\Rightarrow$ $lx + my + nz = 0$.
Problem 5 If $ \frac{x}{b + c - a} = \frac{y}{c + a - b} = \frac{z}{a + b - c} $, then prove that $(b - c)x + (c - a)y + (a - b)z = 0$.
Solution: Let the common ratio be \( k \). This implies, \(x = k(b + c - a),\ y = k(c + a - b),\ z = k(a + b - c) \)
Then, we have $ (b - c)x = k(b - c)(b + c - a) = k(b^2 - c^2)- k(ab - ac) $ $ (c - a)y = k(c - a)(c + a - b) = k (c^2 - a^2) - k(bc - ab) $ $ (a - b)z = k(a - b)(a + b - c) = k(a^2 - b^2) - k(ac - bc) $
Add all the three eualities, we get $ (b - c)x + (c - a)y + (a - b)z = k(b^2 - c^2 + c^2 - a^2 + a^2 - b^2) - k(ab - ac +bc - ab + ac - bc) = 0 $
Therefore, each ratio given in the problem is equal to both $\frac{x+y+z}{a+b+c}$ and $\frac{ax+by+cz}{a^2+b^2+c^2}$. Therfore, $\frac{x + y + z}{a + b + c} = \frac{ax + by + cz}{a^2 + b^2 + c^2}$.